nitksam@gmail.com

Theory of Complex Variables - MA 209 Problem Sheet - 3

Polar Form of Complex Numbers

- 1. Write the given complex number in polar form first using an argument $\theta \neq Arg(z)$ and then using $\theta = Arg(z)$.
 - (a) 2 (c) 5-5i

(b)
$$-3i$$
 (d) $\frac{12}{\sqrt{3}+i}$

- 2. Use a calculator to write the given complex number in polar form first using an argument $\theta \neq Arg(z)$ and then using $\theta = Arg(z)$
 - (a) $-\sqrt{2} + \sqrt{7}i$ (b) -12 5i
- 3. Find $z_1 z_2$ and $\frac{z_1}{z_2}$. Write the number in the form of a + ib

(a)
$$z_1 = \sqrt{2}(\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4}))$$
 (b) $z_2 = \sqrt{3}(\cos(\frac{\pi}{12}) + i\sin(\frac{\pi}{12}))$

- 4. Write each complex number in polar form. Finally write the polar form in the form a + ib
 - (a) $(3-3i)(5+5\sqrt{3}i)$ (b) $\frac{\sqrt{2}+\sqrt{6}i}{-1+\sqrt{3}i}$
- 5. Compute the indicated powers.

(a)
$$(2-2i)^5$$
 (b) $(\sqrt{3}(\cos(\frac{2\pi}{9})+i\sin(\frac{2\pi}{9}))^6$

- 6. Write the complex number in polar form and then in the form of a + ib $\frac{[8(\cos(\frac{3\pi}{8}) + i\sin(\frac{3\pi}{8}))]^3}{[2(\cos(\frac{\pi}{16}) + i\sin(\frac{\pi}{16}))]^6}$
- 7. Use De Moivre's formula with n = 2 to find trigonometric identities for $\cos 2\theta$ and $\sin 2\theta$
- 8. Use De Moivre's formula with n = 3 to find trigonometric identities for $\cos 3\theta$ and $\sin 3\theta$
- 9. Find a positive integer *n* for which the equality holds. $(\frac{\sqrt{3}i}{2} + \frac{1}{2}i)^n = -1$
- 10. Suppose that $z = r(\cos\theta + i\sin\theta)$. Describe geometrically the effect of multiplying z by a complex number of the form $z_1 = \cos\alpha + i\sin\alpha$ when $\alpha > 0$ and when $\alpha < 0$.
- 11. Suppose $z = cos\theta + isin\theta$. If n is an integer, evaluate $z^n + \bar{z}^n$ and $z^n \bar{z}^n$.
- 12. Write an equation that relates arg(z) to arg(1/z), $z \neq 0$.
- 13. Are there any special cases in which $Arg(z_1z_2) = Arg(z_1) + Arg(z_2)$? Proveyour assertions.
- 14. How are the complex numbers z_1 and z_2 related if $arg(z_1) = arg(z_2)$?
- 15. Describe the set of points z in the complex plane that satisfy $arg(z) = \pi/4$.

- 16. Suppose z_1, z_2 , and z_1z_2 are complex numbers in the first quadrant and that the points $z = 0, z = 1, z_1, z_2$, and z_1z_2 are labeled O, A, B, C, and D, respectively. Discuss how the triangles OAB and OCD are related.
- 17. Suppose $z_1 = r_1(\cos\theta_1 + i\sin\theta_1)$ and $z_2 = r_2(\cos\theta_2 + i\sin\theta_2)$. If $z_1 = z_2$, then how are r_1 and r_2 related? How are θ_1 and θ_2 related?
- 18. Suppose z_1 is in the first quadrant. For each z_2 , discuss the quadrant in which z_1z_2 could be located.

(a)
$$z_2 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 (b) $z_2 = -1$

- 19. Suppose z_1, z_2, z_3 , and z_4 are four distinct complex numbers. Interpret geometrically: $\arg(\frac{z_1-z_2}{z_1-z_2}) = \frac{\pi}{2}$.
- 20. For z = neq1, verify the statement

$$1 + z + z^{2} + \dots + z^{n} = \frac{1 - z^{n+1}}{1 - z}.$$

21. Use part 20 and appropriate results to establish that

$$1 + \cos\theta + \cos 2\theta + \dots + \cos n\theta = \frac{1}{2} + \frac{\sin(n+1/2)\theta}{(2\sin(\theta/2))}$$

for $0 < \theta < 2\pi$. The foregoing result is known as **Lagrange's identity**.
