Department of Mathematical and Computational Sciences
 National Institute of Technology Karnataka, Surathkal

sam.nitk.ac.in

Theory of Complex Variables - MA 209
 Problem Sheet - 3
 Polar Form of Complex Numbers

1. Write the given complex number in polar form first using an argument $\theta \neq \operatorname{Arg}(z)$ and then using $\theta=$ $\operatorname{Arg}(z)$.
(a) 2
(c) $5-5 i$
(b) $-3 i$
(d) $\frac{12}{\sqrt{3}+i}$
2. Use a calculator to write the given complex number in polar form first using an argument $\theta \neq \operatorname{Arg}(z)$ and then using $\theta=\operatorname{Arg}(z)$
(a) $-\sqrt{2}+\sqrt{7} i$
(b) $-12-5 i$
3. Find $z_{1} z_{2}$ and $\frac{z_{1}}{z_{2}}$. Write the number in the form of $a+i b$
(a) $z_{1}=\sqrt{2}\left(\cos \left(\frac{\pi}{4}\right)+i \sin \left(\frac{\pi}{4}\right)\right)$
(b) $z_{2}=\sqrt{3}\left(\cos \left(\frac{\pi}{12}\right)+i \sin \left(\frac{\pi}{12}\right)\right)$
4. Write each complex number in polar form.Finally write the polar form in the form $a+i b$
(a) $(3-3 i)(5+5 \sqrt{3} i)$
(b) $\frac{\sqrt{2}+\sqrt{6} i}{-1+\sqrt{3} i}$
5. Compute the indicated powers.
(a) $(2-2 i)^{5}$
(b) $\left(\sqrt{3}\left(\cos \left(\frac{2 \pi}{9}\right)+i \sin \left(\frac{2 \pi}{9}\right)\right)^{6}\right.$
6. Write the complex number in polar form and then in the form of $a+i b$
$\frac{\left[8\left(\cos \left(\frac{3 \pi}{8}\right)+i \sin \left(\frac{3 \pi}{8}\right)\right)\right]^{3}}{\left[2\left(\cos \left(\frac{\pi}{16}\right)+i \sin \left(\frac{\pi}{16}\right)\right)\right]^{6}}$
7. Use De Moivre's formula with $n=2$ to find trigonometric identities for $\cos 2 \theta$ and $\sin 2 \theta$
8. Use De Moivre's formula with $n=3$ to find trigonometric identities for $\cos 3 \theta$ and $\sin 3 \theta$
9. Find a positive integer n for which the equality holds.
$\left(\frac{\sqrt{3} i}{2}+\frac{1}{2} i\right)^{n}=-1$
10. Suppose that $z=r(\cos \theta+i \sin \theta)$. Describe geometrically the effect of multiplying z by a complex number of the form $z_{1}=\cos \alpha+i \sin \alpha$ when $\alpha>0$ and when $\alpha<0$.
11. Suppose $z=\cos \theta+i \sin \theta$. If n is an integer, evaluate $z^{n}+\bar{z}^{n}$ and $z^{n}-\bar{z}^{n}$.
12. Write an equation that relates $\arg (z)$ to $\arg (1 / z), z \neq 0$.
13. Are there any special cases in which $\operatorname{Arg}\left(z_{1} z_{2}\right)=\operatorname{Arg}\left(z_{1}\right)+\operatorname{Arg}\left(z_{2}\right)$? Proveyour assertions.
14. How are the complex numbers z_{1} and z_{2} related if $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$?
15. Describe the set of points z in the complex plane that satisfy $\arg (z)=\pi / 4$.
16. Suppose z_{1}, z_{2}, and $z_{1} z_{2}$ are complex numbers in the first quadrant and that the points $z=0, z=1, z_{1}, z_{2}$, and $z_{1} z_{2}$ are labeled $\mathrm{O}, \mathrm{A}, \mathrm{B}, \mathrm{C}$, and D, respectively. Discuss how the triangles OAB and OCD are related.
17. Suppose $z_{1}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right)$ and $z_{2}=r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)$. If $z_{1}=z_{2}$, then how are r_{1} and r_{2} related? How are θ_{1} and θ_{2} related?
18. Suppose z_{1} is in the first quadrant. For each z_{2}, discuss the quadrant in which $z_{1} z_{2}$ could be located.
(a) $z_{2}=\frac{1}{2}+\frac{\sqrt{3}}{2} i$
(b) $z_{2}=-1$
19. Suppose z_{1}, z_{2}, z_{3}, and z_{4} are four distinct complex numbers. Interpret geometrically: $\arg \left(\frac{z_{1}-z_{2}}{z_{1}-z_{2}}\right)=\frac{\pi}{2}$.
20. For $z=$ neq1, verify the statement

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

21. Use part 20 and appropriate results to establish that

$$
1+\cos \theta+\cos 2 \theta+\cdots+\cos n \theta=\frac{1}{2}+\frac{\sin (n+1 / 2) \theta)}{(2 \sin (\theta / 2)}
$$

for $0<\theta<2 \pi$. The foregoing result is known as Lagrange's identity.

